Abstract

In the collisional dissociation of H;t and D4t
into the Coulomb interacting channels of H+
H++H- and D+*+D*++D- measured in triple
oincidence, the results exhibit unique features
aen scrutinized from a center-of-mass energy
titioning perspective. Starting from the
ler concept of the reaction zone boundary,
al and molecular simulations of the three
b interacting fragments were
aken with the goal of modeling the
ad system energy partitioning. Starting
lous configurations of dissociated Hy*
the simulations show that a bound H+-
D- complex may form due to post-
on interactions. For short times, these
s exhibit classical Keplerian-like orbits
| fragment maintaining its original
haracteristics. In order to identify and
e properties of the time development
ee-body system's center-of-mass
aring, we use a generalized form of
z plot that highlights the time
ance of the three-body correlations with
e can then relate to experiment.
irisons will be made between the
mental and theoretical results.

otivation

¥ We have measured the center-of-mass (ém)
energy partitioning for the dissociation of H;*

and D5 into the polar dissociation channel of
Ht*+H*+H and D++D+4+D-

o In the experimental data interesting
structures develop (Figure 13) when the energy
sharing Is plotted as a function of measured
kinetic energy

o Conduct simulations of three-body motion:

Determine whether long-range Coulomb or
short-range quantum interactions determine

the measured energy sharing

Assess the influence of these interactions,
we numerically calculate the trajectories
and cm energy partitioning of the massive
3-body Coulomb systems

Simulation Procedure

oDivide space into 2 zones (Figure 1)
Reaction Zone — Quantum Interactions
Coulomb Zone - Coulomb Interactions

oFocused on instantaneous three-body
dynamics- Follow the trajectories of the three
particles

oNumerically calculate the motion of H*, H*, H

Reasonable assumptions regarding initial
geometry and energy partitioning

Classical Hamiltonian
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Results in Figures 3-10

oMethodically probe influence of conserved

quantities of total energy (T + U) and angular
momentum 7
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Figure 1: Reaction zone and initial geometry
for following calculations
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Figure 2: Experimental apparatus with inset detector images

Results: Slightlx Correlated
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Figure 3: Trajectories in the three-body cm
frame for E4,;,, = 9.5eVandj=8
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Figure 4: EFnergy sharing in the three-body cm
frame for E4,;,,=9.5eVandj=8

Results: Keplerian Bound
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Figure 7: Trajectories in the three-body cm
frame for E;,;;, = 3.8eVandj =8
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Figure 8: Energy sharing in the three-body cm
frame for E4,;.;, = 3.8eVandj=8

Results: Highly Correlated
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Figure 5: Trajectories in the three-body cm
frame for E;,,,,=4.0eVandj=8
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Figure 6: Energy sharing in the three-body cm
frame for E;,,,, = 4.0eVandj=8
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Figure 9: H+ - H- Separation in the three-body
cm frame for E;,.;, = 3.8eVandj=8
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Figure 10: Trajectories in the bound H™-H
frame for E;,.,;= 3.8eVandj =8

Figure 11: Newton Diagram

Experiment

oDuoplasmatron source produces a 4 keV D,* or
H;* beam

oPhoton detector to monitor interaction
intensity (L) with neutral particle detector

oEnergy analysis with two-stage parallel plate
analyzer (Figure 2)

oThree WSZ position-sensitive detectors with
timing signal facilitates energy analysis and
triple coincidence measurement

o Data analyzed on an event-by-event basis,

transforming from the lab to cm frame (Figure
11 and Figure 12)
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Figure 12: Measured Ht,H*,H energy
partitioning emphasizing "fluted” patterns

oDue to the size and complexity of the three-
body parameter space, we compare trends and

structures between simulations and experiment

oFigure 13 compares the time dependent
energy sharing in Figure 8 with experiment

o Highlighted simulation results is signature of
H*-H bound system dissociating at maximum
separation freezing two body dynamics
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Figure 13: Comparing 2 "flutes” in experiment
data with simulation results
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